文章编号: 0253-2239(2009)10-2650-06

2000 l/mm X 射线镂空透射光栅的制备研究

李海亮1,2 吴 坚2 朱效立1 谢常青1 刘 明1 曹磊峰3

1 中国科学院微电子研究所纳米加工与新器件集成技术实验室,北京 100029

(2 北京工业大学激光工程研究院,北京 100022; 3 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900/

摘要 在满足工艺要求的前提下,通过模拟光栅衍射,设计出镂空透射光栅模型,在此基础上将电子束和 X 射线光刻技术相结合,研究了制造 2000 1/mm X 射线镂空透射光栅的新工艺技术。首先利用电子束光刻和微电镀技术在 镂空聚酰亚胺薄膜底衬上制备 X 射线母光栅掩模,然后利用 X 射线光刻和微电镀技术实现了光栅图形的复制,之 后采用紫外光刻和微电镀技术制作加强筋结构,最后通过腐蚀体硅和等离子体刻蚀聚酰亚胺完成镂空透射光栅的 制作。从此新的制造工艺结果上来看,制备的光栅栅线平滑,占空比合理,侧壁陡直,不同光栅之间一致性好,完全 可以满足应用需求,充分表明了该制造技术是透射式 X 射线衍射光学元件制造的良好选择。

关键词 光学制造;镂空透射光栅;电子束光刻;X射线光刻;微电镀

中图分类号 TN405 文献标识码 A doi: 10.3788/AOS20092910.2650

Fabrication and Study of 2000 l/mm X-Ray Self-Standing Transmission Gratings

Li Hailiang^{1,2} Wu Jian² Zhu Xiaoli¹ Xie Changqing¹ Liu Ming¹ Cao Leifeng³ ¹Key Lab of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics,

Chinese Academy of Sciences, Beijing 100029, China

² Institute of Laser Engineering, Beijing University of Technology, Beijing 100022, China

³ Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China

Abstract Within the limit of fabricating techniques, 2000 1 /mm self-standing transmission gratings model was designed. And by combining the techniques of electronic-beam lithography and X-ray lithography, the 2000 1 /mm X-ray self-standing transmission gratings was fabricated. Firstly, the electronic-beam lithography and micro-electroplating technology was used to prepare a master mask of gratings on polyimide membrane substrate. Then by using X-ray lithography and micro-electroplating, child gratings was replicated on the master mask. And the self-standing graph was transferred to the daughter gratings via utraviolet (U-V) lithography and micro-electroplating. Finally, with the technology of etching and inductively coupled plasma (ICP), the fabrication of X-ray self-standing transmission gratings was fulfilled. From the fabrication results of the gratings, it shows that bars smoothness, the absent ratio and the profile of the gratings are all desired.

Key words optical fabrication; self-standing transmission gratings; electronic-beam lithography; X-ray lithography; micro-electroplating

1 引 言

X射线透射光栅谱仪具有结构简单、光谱范围 宽、能量响应平滑、谱面平直等优点,并且能够方便 地同时间、空间分辨仪器相结合,构成能同时诊断等 离子体软 X 射线时间能谱特性和空间能谱特性的 测量系统,广泛应用于 X 射线天文望远镜^[1~3]、激光

作者简介:李海亮(1984—),男,硕士研究生,主要从事高线密度衍射光学元件研制方面的研究。

E-mail: xiaobeizhang@yahoo.com.cn

导师简介:吴 坚(1973-),男,教授,主要从事微细加工方面的研究。E-mail: 5777@bjut.edu.cn

收稿日期: 2008-10-27; 收到修改稿日期: 2009-02-20

基金项目:国家 973 计划(2007CB935302)和国家自然科学基金(60825403)资助课题。

2651

等离子体诊断^[4,5]和同步辐射^[6]应用等方面。X射 线透射光栅是X射线透射光栅谱仪的核心色散光 学元件^[7],美国科学家研制的ChandraX射线望远 镜中,其光栅谱仪就是由340片中高能透射光栅 (2000 l/mm, 5000 l/mm)和540片低能透射光栅 (1000 l/mm)组成的^[8]。

传统的光栅制作工艺有全息曝光、机械刻划和 电子束曝光等。机械刻划和电子束曝光由于对设备 和环境要求苛刻,并且制备周期长,价格昂贵,不适 合小批量稳定生产^[8]。全息光刻制作 X 射线透射 光栅的优点是效率高、成本低,有效面积大,可以批 量制作高线密度 X 射线透射光栅^[10,11]。美国的 MIT 采用全息光刻和离子束刻蚀的方法制作了有 底衬的 5000 l/mm X 射线透射光栅^[12,13],并广泛应 用于各个领域;中国科学院微电子研究所采用电子 束和 X 射线光刻相结合的方法研制成功了 5000 l/mm有底衬的 X 射线透射光栅。但针对高密 度透射光栅在空间探测,同步辐射等特殊的应用环 境,普通的带底衬的透射光栅在软 X 射线波段对光 的吸收非常严重,这极大地降低了透射光栅的工作 效率和在解谱过程中的不确定性。中国科技大学采 用全息光刻和离子束刻蚀的方法研制成功了 1000 l/mm和 2000 l/mm 的无底衬 X 射线透射光 栅。但在全息光刻中,控制不同区域光栅图形的一 致性和光栅栅线边缘光滑陡直方面比较困难[14]。 此外,近年来曹磊峰提出了谱学光子筛的新概念,利 用谱学光子筛可以得到更高的分辨率,同时降低对 光刻技术制作工艺的要求,而且其微孔的随机分布, 能够有效抑制光轴方向的高阶衍射和横向旁瓣效 应,改善成像对比度。而全息光刻只能用于周期图 形的制作,无法胜任谱学光子筛的制作,在 2000 l/mm的无底衬 X 射线透射光栅制造技术方面 尚需进一步研究。

作为国内多个领域急需的软 X 射线波段的色 散元件,对 2000 l/mm 无底衬 X 射线透射光栅的新 的、稳定的制造工艺技术的研究显得非常迫切。本 文将电子束光刻、X 射线光刻、紫外光刻和等离子体 刻蚀相结合的工艺方法制作了 X 射线镂空透射光 栅,充分利用了电子束和 X 射线光刻高分辨率、工 艺稳定的特点,并且对制造过程中的若干关键问题 进行了详细的研究。

2 镂空透射光栅的设计

无底衬 X 射线镂空透射光栅的剖面示意图如 图 1 所示。光栅结构制备在镂空的聚酰亚胺薄膜 上,栅线之间的聚酰亚胺薄膜被去除,栅线成为完全 镂空的结构,栅线两端由自支撑结构(加强筋)连接。

$$n^{(m)}(q)/N_{0}(q) = \left[\sin(M_{\mu}m_{\pi})/M\sin(m_{\pi})\right]^{2} \left\{\sin\left[(a/d)m_{\pi}\right]/(m_{\pi})\right\}^{2} \times \left[1 + \exp(-2qzk) - 2\exp(-qzk)\cos(qz\delta)\right] \quad m \neq 0,$$
(1)
$$n^{(m)}(q)/N_{0}(q) = \left(\frac{a}{d}\right)^{2} + \left(1 - \frac{a}{d}\right)^{2}\exp(-2qzk) + 2\frac{a}{d}\left(1 - \frac{a}{d}\right) \times \exp(-2qzk)\cos(qz\delta) \quad m = 0,$$
(2)

且 $N_0(q) = n_0(q)(1-f)T(q)$, 其中 $q = \frac{E}{hc}$,

 $n_0(q)$ 为入射到光栅上的光强,f为光栅支撑结构所 占面积比;T(q)为有底衬光栅底衬对X射线的透过 率(对无底衬自支撑透射光栅,T(q) = 1),E为X射 线光子能量,M为光栅线数(X射线照射部分),a/d和z分别为光栅的透光部分与光栅周期之比和栅线 厚度,k为栅线材料光学常量的虚部, $n = 1 - \delta$ 是栅 线材料光学常量的实部。

从(1)式中可以看出,在同一光源的情况下,

a/d,z和f对一级以上绝对衍射效率起着主要影响。根据H.W.Schnopper的标量衍射理论方法^[15],在0.01~41 nm波长范围内等间隔抽取100个点分别对以上3个参数进行了一级衍射效率模拟。图2为以上3个参数分别对金镂空透射光栅一级衍射效率影响的模拟对比结果,图2(a),(b)和(c)分别为f,z和a/d的变化对一级衍射效率的影响。从模拟结果上来看保证镂空透射光栅有大高宽比、大的有效面积和接近1:1的占空比,才能有效提高衍射效率。但是在工艺制作过程中,大的高宽比

常会引起光刻胶倒塌不利于后续工艺的制作。结合 图 2(b)栅线厚度对衍射效率的影响,在大部分软 X 射线波段(0.1~8 nm),500 nm 厚栅线条衍射效率 较高,加上电镀种子层的厚度,最终确定栅线厚度为 550 nm 左右。针对镂空透射光栅在空间探测上高 温、振动和强辐射的应用环境,只能增大支撑结构面 积牺牲部分衍射效率来保证光栅运行的稳定,防止 金栅线条的倒塌和扭曲,最终确定支撑结构的面积 占光栅总面积的 50%。根据实际工艺条件和应用 环境要求折中选择合适的设计参数,表 1 为最终确 定的 X 射线透射光栅设计参数。

图 2 光栅参数 f,z和 a/d 对镂空透射光栅一级衍射效率的影响。(a) f 的影响;(b) z 的影响;(c) a/d 的影响 Fig. 2 Effects of a/d, z and f on the first-order diffraction efficiency. (a) effect of f on the diffraction efficiency; (b) effect of z on the diffraction efficiency; (c) effect of a/d on the diffraction efficiency

表1 X射线透射光栅基本参数

Table 1 Basic parameters of self-standing transmission gratings to be fabricated

Gratings parameters	Value
period d/nm	500
aperture width a/nm	250
grating bars thickness z/nm	550
ratio of support mesh area $f/\sqrt[0]{0}$	50
support mesh thickness $h/\mu{ m m}$	2.5
material	gold
density of grating bars $M/(1 / \text{ mm})$	2000
total area $A/(\text{mm} imes \text{mm})$	10×1
wavelength range Λ/nm	0.2 ∼500

3 软 X 射线镂空透射光栅的制造工艺

3.1 光栅图形的制备

在我们的制备过程中,首先利用电子束光刻制 作 X 射线透射光栅的母光栅掩模,然后再用 X 射线 光刻进行复制,再通过紫外曝光和微电镀技术将支 撑结构转移到光栅上,最后利用等离子体刻蚀去除 薄膜底衬,完成 X 射线镂空透射光栅的制作。

电子束光刻制备母光栅掩模的过程如图 3(a) 所示。在经过抛光和清洁处理好的硅基片上依次制 备 6 μm 厚聚酰亚胺薄膜和电子束蒸发 20 nm 铬金 电镀种子层;旋涂电子束抗蚀剂 PMMA 450 nm;利 用电子束进行曝光,电子加速电压为 50 kV,电子束

图 3 X 射线镂空透射光栅制作的工艺流程。(a)电子束 直写制作 X 射线光刻掩模板;(b)X 射线光刻制作 普通透射光栅

Fig. 3 Flow chart of fabricating self-standing transmission gratings. (a) fabrication of X-ray lithographic mask by using electronic-beam; (b) fabrication of traditional transmission gratings by using X-ray lithography

流为 50 Pa,显影后得到光栅图形;采用亚硫酸盐电 镀金工艺将抗蚀剂图形转移为 400 nm 厚的金栅线 条,在微电镀的过程中,我们采用高频交流电镀的方 法取代了原来的直流电镀,克服了直流电镀中金颗 粒生长速度快、电镀金粗糙度大的缺点,通过控制电 流密度的大小控制金的生长速度,并且不断测量金 和抗蚀剂的高度差来精确控制金的厚度;去除抗蚀 剂和电镀种子层后得到 X 射线光刻掩模。图 4 是 通过上述工艺过程制作出来的 2000 l/mm 的 X 射 线光刻掩模 SEM 照片,其栅线条厚度为 400 nm,周 期为 500 nm,金栅线条为 275 nm。将掩模栅线宽 度进行+25 nm 的校正是为了在接下来的 X 射线 光刻过程中抵消直边菲涅耳衍射引起的图形区邻近 区域扩展,保证复制出来的子光栅线宽为接近 250 nm,复制光栅的占空比接近 1:1。

X射线光刻复制光栅是在合肥国家同步辐射实 验室光刻站上进行的,其工艺流程与采用电子束光 刻制作母光栅掩模的流程基本相同,如图 3(b)所 示。但有几点不同之处:1)为了增加金栅线条的厚 度,旋涂 PMMA 抗蚀剂的厚度变为为 600 nm;2)为 了在反应耦合等离子体刻蚀聚酰亚胺薄膜时减小工 艺难度,采用尽可能薄的 1.2 μm 厚的聚酰亚胺薄 膜作为衬底;3)采取先进行曝光、电镀等工艺最后再 进行硅的背面腐蚀的工艺路线。在 X 射线光刻过 程中,由于采用接触式曝光,所以控制掩模板和抗蚀 剂之间的间隙是保证复制出来的子光栅的占空比接 近1:1的关键。为了获得稳定的曝光条件,我们采 取2种措施弥补接触间隙所带来的分辨率的降低: 1)采用先进行光刻最后再进行体硅腐蚀,有效减小 了掩模和基底之间的间隙,从而保证了 X 射线光刻 的高分辨率;2)在掩模和基底之间施加了一个恒定 的磁力,进一步减小了曝光间隙。在实验中,对于

图 5 带聚酰亚胺薄膜底衬的 2000 l/mm X 射线 透射光栅 SEM 照片

Fig. 5 SEM picture of 2000 l/mm X-ray transmission gratings with polyimide substrate

PMMA 抗蚀剂,曝光剂量从 4 J/cm² 增加到 8 J/cm²,其它条件不做任何变化也可以得到一致的曝光结果,使得 X 射线曝光的显影工艺窗口大大增加。在实际 X 射线曝光过程中我们采用曝光剂量为 8 J/cm²,X 射线能量范围在 500~2000 eV。图 5 所示为带聚酰亚胺薄膜底衬的 2000 l/mm 透射光 栅 SEM 照片,栅线条厚 550 nm,周期为 500 nm,占 空比接近 1:1。

3.2 自支撑结构的制作

采用紫外光刻、微电镀的方法在制备好的光栅 图形上制作支撑结构图形,利用氧等离子体刻蚀去 除栅线之间的聚酰亚胺。支撑结构掩模板如图 6 所 示,其中浅色透光区域为支撑结构,深色不透光部分 为光栅线条区域。制作过程同 X 射线光刻过程相 似,如图7所示,具体步骤如下:在制备好的普通带 底衬光栅上旋涂 2.6 µm 厚的 9918 型抗蚀剂;采用 紫外光刻将自支撑结构图形转移到光栅上;然后采 用亚硫酸盐高频交流电镀金工艺将抗蚀剂图形转移 为2.5 µm 厚的金层;去除抗蚀剂;采用硝酸、氢氟 酸和醋酸混合液腐蚀掉光栅背面的体硅;利用感应 耦合氩离子体反应刻蚀去除金电镀种子层,再用氧 等离子体刻蚀将光栅正面栅线之间的聚酰亚胺底衬 去除,至此完成镂空透射光栅的制作。在微电镀过 程中,由于支撑结构厚度要达到 2.5 µm,以保证足 够的支撑强度。高频交流电镀获得金层相对致密、 光滑明亮、金膜应力较小。图 8 为 2000 1/mm 镂空 透射金光栅 SEM 照片,(a)和(b)分别为制备的 2000 l/mm 无底衬 X 射线镂空透射光栅的金膜面 和聚酰亚胺底衬面的 SEM 照片。光栅栅线平滑, 占空比合理,金膜面和底衬面的栅线宽度差别较小, 刻蚀效果比较理想。但由于在等离子体刻蚀去除底 衬过程中避免不了会有残留的聚酰亚胺,导致在观 察扫描电镜时,导电性降低,所以得到的 SEM 照片 比较模糊。

图 6 支撑结构显微镜照片 Fig. 6 Microscope picture of self-standing structure

Fig. 7 Fabrication of self-standing transmission gratings by using ultraviolet lithography and inductively coupled plasma etching

- 图 8 2000 l/mm 自支撑透射金光栅 SEM 照片。(a)无底 衬 X 射线镂空透射光栅的金膜面;(b) X 射线镂空 透射光栅聚酰亚胺底衬面
- Fig. 8 SEM pictures of 2000 l/mm X-ray self-standing transmission gratings. (a) gold side of the X-ray self-standing transmission gratings; (b) polyimide side of the X-ray self-standing transmission gratings
- 4 讨 论

在电子束光刻制造 X 射线光刻掩模的过程中, 对栅线进行了+25 nm 的校正,抵消了在 X 射线复 制时因直边菲涅耳衍射引起的图形区邻近区域扩 展。在 X 射线光刻中,利用附加磁力和最后进行体 硅腐蚀的方法,减小了掩模和基底之间的间隙,获得 了稳定的宽工艺窗口,使得光栅线宽精度控制在 ±10 nm,占空比接近 1:1。采用高频交流电镀技 术,通过控制电流密度大小来控制金生长速度,得到 的光栅栅线平滑,并不断监测金和抗蚀剂的高度差 来控制金的厚度,得到实际金厚度的精度在 ±15 nm。利用感应耦合等离子刻蚀将栅线之间的 底衬完全刻蚀透,制造出来的镂空透射光栅两面的 光栅线宽差控制在±10 nm,保证了栅线剖面陡直。

5 结 论

报

通过模拟光栅一级衍射效率,对光栅模型结构 进行了设计。利用电子束、X射线光刻、紫外光刻、 微电镀技术和等离子体刻蚀技术,克服了 X射线中 掩模衬底曝光间隙不稳定、感应耦合等离子刻蚀中 侧壁陡直度控制等关键问题,制备了 2000 l/mm 的 无底衬 X射线镂空透射光栅。在制备过程中,研究 了电子束和 X射线镂空透射光栅。在制备过程中,研究 了电子束和 X射线曝光中的栅线展宽问题,并做了 纳米尺度上的校正,使得光栅线宽精度控制在 ±10 nm。在电镀过程中,精确检测金栅线厚度,得 到实际金厚度精度在±15nm。利用 ICP 刻蚀各向 异性特点,得到的光栅剖面陡直度较高。该技术充 分利用了电子束高分辨率和 X射线光刻高效率的 优点,实现了小批量生产,为高线密度透射光栅谱仪 在整个 X射线波段的实际应用奠定了坚实的基础。

致谢 感谢北京同步辐射实验室的伊福庭研究员和 张菊芳工程师在微电镀方面给予的帮助和有益的讨 论;感谢合肥国家同步辐射实验室刘刚副教授、阚娅 工程师和柳龙华博士在X射线曝光方面给予的支 持与帮助;感谢张培文、田继红和路程在电子束蒸发 以及高密度等离子体刻蚀方面给予的帮助。

参考文献

- 1 A. C. Brinkman, C. J. T. Gunsing, J. S. Kaastra *et al.*. First light measurements of Capella with the low energy transmission grating spectrometer aboard the Chandra X-ray observatory[J]. *Astrophysical Journal Letters*, 2000, **530**(02): L111~L114
- 2 T. H. Markert, D. Dewey, J. E. Davis *et al.*. Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings[C]. *SPIE*, 1995, **2518**: 424~427
- 3 K. A. Flanagan, T. T. Fang, C. Baluta *et al.*. Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings: [[[C]]. SPIE, 1995, **2808**: 650~676
- 4 D. A. Fedin, V. Kantsyrev, B. Bauer *et al.*. "Polychromator" five channel X-ray/EUV spectrometer with imaging transmission grating for plasma diagnostics[C]. SPIE, 1999, 3764, 80~84
- 5 Xu Xiangdong, Hong Yilin, Tian Yangchao *et al.*. Fabrication of self-supporting transmission gratings for plasma diagnostics [C]. SPIE, 1999, **3766**: 380~385
- 6 Wang Jie, Li Honghong, Wang Feng et al.. Commissions and experiments of soft X-ray magnetic circular dichroism beamline [J]. Nuclear Techniques, 2005, 28(07): 489~495
- 王 劼,李红红,王 峰等.软X射线磁性圆二色光束线的调 试和实验[J].核技术,2005,**28**(07):489~495
- 7 Deng Jian, Zhou Fangchuan, Qing Ling *et al.*. Theoretical analysis of characteristics of the high efficiency high resolution soft X-ray transmission grating spectrograph [J]. Acta Optica Sinica, 2000, **20**(5): 647~653
 - 邓 健,钟方川,覃 岭等.高效高分辨率大面积透射光栅谱仪

特性的理论分析[J]. 光学学报, 2000, 20(5): 647~653

- 8 C. R. Canizares, J. E. Davis, D. Dewey *et al.*. The chandra high energy transmission grating: design, fabrication, ground calibration and five years in flight [J]. *Publications of the Astronomical Society of the Pacific*, 2005, **117** (07): 1144~1171
- 9 Xu Xiangdong, Hong Yilin, Huo Tonglin *et al*.. The fabrication techniques for soft X-ray transmission gratings [J]. *Optical Technology*, 2001, **27**(04): 294~296

徐向东,洪义麟, 霍同林 等. 软 X 射线透射光栅制作技术[J]. 光学技术, 2001, **27**(04): 294~296

- 10 Zhu Weizhong, Wu Yanqing, Chen Min *et al.*. Optimized design of transmission grating used for 13.4 nm soft X-ray interference lithography[J]. *Acta Optica Sinica*, 2008, 28(07): 1225~1230 朱伟忠, 吴衍青,陈 敏等. 13.4 nm 软 X 射线干涉光刻透射光 栅的优化设计[J]. 光学学报, 2008, 28(07): 1225~1230
- 11 Qiu Keqiang, Xu Xiangdong, Hong Yilin *et al.*. Design and fabrication of gold transmission phase gratings for soft X-rays [J]. Acta Physica Sinica, 2008, 57(10): 6239~6244
 邱克强,徐向东,刘 颖等. 软 X 射线位相型金透射光栅的设计与制作[J]. 物理学报, 2008, 57(10): 6239~6244
- 12 Zhu Xiaoli, Ma Jie, Xie Changqing et al.. Fabrication of 3333 lp/

mm soft X-ray transmission gratings[J]. Acta Optica Sinica, 2008, **28**(06): 1026~1030 朱效立,马杰,谢常青等. 3333 lp/mm X 射线透射光栅的研

₩ [J]. 光学学报, 2008, **28**(06): 1026~1030

- 13 M. L. Schattenburg, R. J. Aucoin, R. C. Fleming *et al.*. Fabrication of high energy X-ray transmission gratings for AXAF [C]. SPIE, 1994, 2280: 181~190
- 14 Xu Xiangdong, Hong Yilin, Huo Tonglin et al.. Fabrication of Laminar grating for synchrotron radiation [J]. Optical Technology, 2001, 27(05): 459~461 徐向东,洪义麟, 霍同林 等. 同步辐射 Laminar 光栅的研制[J]. 光学技术, 2001, 27(05): 459~461
- 15 H. W. Schnopper, L. P. van Speybroeck, J. P. Delvaille *et al.*. Diffraction grating transmission efficiencies for XUV and soft X-ray[J]. *Appl. Opt.*, 1977, 16(04): 1088~1091
- 16 Yang Jiamin, Yi Rongqing, Chen Zhenglin *et al.*. Study of transmission grating diffraction efficiency for soft X-rays [J]. Acta Physica Sinica, 1998, 47(4): 0613~0618 杨家敏,易荣清,陈正林等.透射光栅对软X射线衍射效率的 研究[J]. 物理学报, 1998, 47(4): 0613~0618